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Abstract: Mountaintop trace-gas  mixing  ratios are  oftentimes assumed to represent  free-

atmospheric  values, but  are  affected by valley  planetary boundary-layer (PBL)  air  at certain  

times.  We hypothesize that  the afternoon valley-PBL  height  relative to the ridgetop is  important  

in  the  diurnal  cycle  of mountaintop trace-gas  mixing  ratios. To  investigate  this, we use,  1) four-

years (1 January 2009 –  31 December 2012)  of CO  and CO2  mixing-ratio  measurements  and 

supporting  meteorological observations  from  Pinnacles (38.61 °N, 78.35 °W, 1017 m  a.s.l.),  

which is  a monitoring site in the  Appalachian Mountains, 2)  regional  O3  mixing-ratio  

measurements,  and 3) PBL heights determined from a  nearby sounding s tation. Results reveal  

that the  amplitudes of the  diurnal  cycles of  CO and CO2  mixing  ratios  vary  as a function of the  

daytime maximum valley-PBL  height relative to the ridgetop. The mean diurnal  cycle  for the  

subset of  days when the  afternoon valley-PBL  height  is  at least  400 m  below the ridgetop  shows  
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a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the 

mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL 

dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, 

especially on days when PBL heights are at least 400 m above the ridgetop, suggests that 

measurements from these days can be used as with afternoon measurements from flat terrain in 

applications requiring regionally-representative measurements. 

Keywords: Carbon dioxide; Carbon monoxide; Mountaintop monitoring; Planetary boundary-

layer height 

1 Introduction 

Mixing processes within the planetary boundary layer (PBL) affect the exchange of heat, 

moisture, momentum, trace gases, and aerosols between the Earth’s surface and adjacent free 

atmosphere (e.g. Stull 1988). The PBL height represents the height to which these turbulent 

mixing processes occur. Over flat terrain and assuming a higher trace-gas mixing ratios in the 

PBL than in the overlying free atmosphere, growth of the daytime PBL causes free atmospheric 

air to be entrained into the PBL, causing mixing ratios of passive trace gases to decrease (e.g. 

Pochanart et al. 2003, Elanksy et al. 2007, Popa et al. 2010, Pal 2014, Pal et al. 2015, Berhanu et 

al. 2016, Chandra et al. 2016, Sreenivas et al. 2016). For this reason, the PBL height is an 

essential parameter describing the vertical mixing of trace gases and pollutants in air quality 

dispersion studies (e.g. Dabberdt et al. 2004, Koffi et al. 2016). 

Over mountaintops, the relationship between PBL height and the diurnal cycle of aerosols 

and trace gases is more complex because of local and mesoscale transport processes occurring in 

these areas (e.g. Rotach and Zardi, 2007, van der Molen and Dolman, 2007, De Wekker et al. 
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2009, Steyn et al. 2013, Pal et al. 2014, 2016). Thus, the diurnal cycle of trace-gas species, 

assuming that there are no local sources or sinks affecting the trace-gas mixing ratio, is governed 

by the trace-gas mixing ratio over the surrounding lower terrain via vertical and horizontal 

mixing. Consequently, the diurnal trace-gas cycle over mountaintops is much different than over 

flat terrain. In situations when the valley-PBL top remains below the mountaintop, there is 

oftentimes no clear diurnal trace-gas cycle. In these situations, mountaintop trace-gas mixing 

ratios are often assumed to be representative of free-atmospheric mixing ratios, as has been 

shown in trace gas and aerosol observations from tall mountaintops (e.g. Baltensperger et al. 

1997, Lugauer et al. 1998). 

In other situations, PBL air in adjacent valleys has a significant impact on the mountaintop 

trace-gas cycle. During the daytime, polluted PBL air from within the valley is transported to the 

mountaintop via growth of the valley PBL and thermally-driven upslope flows. Previous studies 

have found that these processes influence the diurnal cycle of carbon dioxide (CO2) mixing-

ratios observed at nearby mountaintops (e.g. Keeling et al. 1976, Thoning et al. 1989, De 

Wekker et al. 2009) and affect the presence of the daytime minimum CO2 mixing-ratio (e.g. De 

Wekker et al. 2009; Pal et al., 2017). Other trace gas and aerosol species exhibit an increase in 

mixing-ratio at mountaintop sites due to the arrival of valley-PBL air at the mountaintop via 

growth of the valley PBL and thermally-driven upslope flows. The observed increase has been 

reported for many trace-gas species, including carbon monoxide (CO) (e.g. Weiss-Penzias et al. 

1996, Forrer et al. 2000, Lin et al. 2011, MacDonald et al. 2011), ozone (O3) (e.g. Sullivan et al. 

2016), methane (e.g. Necki et al. 2003; Bamberger et al. 2017), gaseous mercury (e.g. Obrist et 

al. 2008), as well as aerosols (e.g. Baltensperger et al. 1997, Bukowiecki et al 2016). The 

amplitude and timing of this increase vary seasonally. The increase is typically largest during the 
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summer when the valley PBL is deep and exceeds the mountaintop height, but may be non-

existent during the winter when the valley PBL is very shallow and remains below the 

mountaintop. In the latter scenario, the mountaintop remains in the free atmosphere throughout 

the day (e.g. Baltensperger et al. 1997, Lugauer et al. 1998, Henne et al. 2008a, Henne et al. 

2008b). Oftentimes, there is a corresponding night-time decrease in CO mixing ratio (e.g. Gao et 

al. 2005, Balzani Lööv et al. 2008, Henne et al. 2008b) and aerosols (e.g. Baltensperger et al. 

1997, Bukowiecki et al 2016) because sinking motions transport free-atmospheric air to the 

mountaintop (e.g. Schmidt et al. 1996). 

Identifying representative measurements is important for a number of applications including, 

e.g. atmospheric chemistry studies (e.g. Novelli et al. 1998), air quality studies (e.g. Dabbert et 

al. 2004), and carbon cycle studies (e.g. Andrews et al. 2014). One of the simplest filtering 

approaches is to remove measurements made during the daytime and only assimilate night-time 

measurements from mountaintops (e.g. those made between 0000 and 0400 local standard time 

[LST]) into these applications (e.g. Peters et al. 2010). The major assumption of this approach is 

that night-time measurements made at mountaintops are representative of the free atmosphere 

(e.g. Schmidt et al., 1996). In addition to filtering trace-gas measurements by time of day, 

statistical filtering techniques, e.g. removing outliers, using low-pass filters (e.g. Thoning et al. 

1989), filtering measurements made when there are strong local vertical trace-gas gradients and 

excessive hourly variances present in the measurements (e.g. Brooks et al. 2012), have been 

developed to identify regionally-representative trace-gas measurements. Meteorological analyses 

have also been used to identify measurements affected by local sources, including performing 

trajectory analyses to identify source regions of elevated trace-gas mixing ratios (e.g. Forrer et al. 

2000, Zellwegger et al. 2003), and distinguishing between upslope and downslope flows using in 

4 



 
 

     

      

   

       

   

     

    

     

     

        

     

        

  

     

      

       

    

    

        

  

    

    

        

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

situ meteorological measurements (e.g. Henne et al. 2008a). However, to the best of our 

knowledge, no study has used knowledge of daytime PBL heights to identify regionally-

representative trace-gas measurements from mountaintops. 

Following the aforementioned studies, one may hypothesize that the diurnal trace-gas cycle 

at mountaintops depends on the maximum daytime PBL height in the adjacent low-lying terrain 

relative to the ridgetop height. This dependency can then be used in helping identify regionally-

representative mountaintop trace-gas measurements. Recent studies have begun to address this 

hypothesis using mountaintop CO mixing ratio and accompanying in situ meteorological 

measurements. Lee et al. (2015) found that, for a mountaintop site in north-western Virginia, 

USA, referred to as the Pinnacles site, CO mixing ratios decreased during the daytime on clear 

fair weather days. Pollutants contained within the valley PBL arrived at the mountaintop in these 

cases, but PBL mixing and dilution effects produced a decrease in mountaintop CO mixing 

ratios. 

In the present study, we follow up on these analyses by investigating how these mountaintop 

trace gas changes depend on the daytime maximum PBL height relative to the ridgetop height. 

We address this question for both CO and CO2 mixing ratios and use four years of measurements 

accompanied by collocated meteorological measurements from the Pinnacles site and also 

meteorological measurements from surrounding locations. These measurements allow for a 

process-based study, rather than a climatological overview of the trace-gas measurements at the 

Pinnacles site that previous studies have provided (i.e. Lee et al. 2015). The Pinnacles site is an 

ideal location to investigate the influence of the PBL height relative to the ridgetop on the 

observed trace-gas cycle because the PBL height can either be well below or well above the 

ridgetop (e.g. Lee and De Wekker 2016). Furthermore, the CO2 mixing-ratio measurements from 
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the Pinnacles site are currently used to estimate regional- to continental-scale carbon fluxes in 

CarbonTracker, an inverse carbon transport model that assimilates observations from regionally-

representative trace-gas monitoring sites located in flat terrain (e.g. Peters et al. 2007) and at 

mountaintops (e.g. Lin et al. 2017). Careful selection of trace-gas measurements and their degree 

of representativeness from sites such as Pinnacles is necessary to improve the surface fluxes 

calculated by these models. 

2 Site Description and Datasets 

2.1 Site Description 

The Pinnacles site (38.61 °N, 78.35 °W, 1017 m above sea level (a.s.l.)) is a mountaintop site 

with a 17-m tower from which meteorological and trace-gas measurements have been made 

since 2008. The site is located in the Virginia Blue Ridge Mountains, which are along the eastern 

flank of the Appalachians in the eastern USA. The mountain ridge on which the Pinnacles site is 

located ranges in height from 1000 to 1200 m a.s.l. and is about 800 m above the surrounding 

valley and plain. The Page Valley, part of the larger Shenandoah Valley, is located west of the 

Pinnacles site; the Virginia Piedmont is located east of the Pinnacles site. The area immediately 

surrounding the Pinnacles site is a mixed deciduous forest with a mean canopy height of about 

14 m, while the adjacent lowlands are comprised of mixed deciduous forests and cropland. 

Further details about the site and surrounding region are found in, e.g. Lee et al. (2012) and Lee 

et al. (2014). 

6 



 
 

    

       

       

   

     

      

        

        

         

    

      

     

      

  

135

136

137

138

139

140

141

142

143

144

145

146

147

148

2.2 CO Mixing-Ratio Measurements 

CO and CO2 mixing-ratio measurements at the Pinnacles site began in late August 2008 at 5, 10, 

and 17 m a.g.l. (above ground level) through a collaboration with the NOAA Earth System 

Research Laboratory. The measurement system and in situ calibrations have already been 

described by Lee et al. (2015), and a detailed description of the measurement uncertainties is 

discussed in Andrews et al. (2014). In the present study, we used 30-min means of the CO and 

CO2 mixing-ratio data collected 17 m a.g.l. during the site’s first four full years of operation, i.e. 

1 January 2009 through 31 December 2012. Much of our focus is on CO mixing ratio rather than 

CO2 mixing ratio because, during the growing season, CO2 mixing ratio is affected both by PBL-

dilution and entrainment as well as photosynthetic uptake occurring on site and along upwind 

forested mountain slopes (e.g. Sun et al. 2007), which complicate the interpretation of the diurnal 

cycle. Because CO mixing ratio is unaffected by local uptake, it is a more suitable candidate than 

CO2 mixing ratio for investigating PBL mixing and transport processes over mountainous terrain. 
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Fig 1 Topographic map indicating the location of the Pinnacles site relative to the Big Meadows site and the Luray 

Caverns (LC) airport (white X’s). Shading shows elevation a.s.l. The inset map at the bottom left indicates the study 

location, denoted by a black box, in the eastern USA. 

2.3 Supplemental Measurements 

To help interpret the diurnal CO and CO2 mixing-ratio cycle, we used supplemental 

meteorological and trace-gas measurements. Meteorological measurements at the Pinnacles site 

began in July 2008 and include temperature, humidity, wind speed and direction, rainfall, 

pressure, incoming and outgoing shortwave and longwave radiative fluxes, and fluxes of sensible 

heat, latent heat, and CO2 mixing ratio. In addition to measurements from the Pinnacles site, we 

used meteorological and trace-gas measurements from nearby monitoring sites. Mountaintop O3 

mixing-ratio measurements were obtained from the Big Meadows site (38.52 °N, 78.44 °W, 

1079 m a.s.l.), located on the same ridgeline 14 km south of the Pinnacles site, and from the Page 
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Valley (Fig. 1) at the Luray Caverns airport (38.66 °N, 78.50 °W, 275 m a.s.l.), located 13 km 

west of the Pinnacles site. At both the Big Meadows site and the Luray Caverns airport, O3 

mixing ratios were measured 10 m a.g.l. using a Thermo Environmental Instruments Model 49i 

UV photometric O3 analyzer that has a 1-ppb precision, a 20-s response time, and span drift of 

<1%. The data record at the Big Meadows site for the period of interest was mostly complete, 

although there existed a data gap between late February and April 2010. At the Luray Caverns 

airport, hourly O3 mixing ratios were sampled from 1 April through 31 October annually. 

3 Methods 

3.1 Determining PBL Heights near the Mountaintop 

Reliable PBL height estimates over the Page Valley, which is most often upwind of the Pinnacles 

site based on previous studies of the site’s climatology (e.g. Lee 2015; Lee et al. 2015), are 

required to investigate the role of the valley PBL on the trace-gas cycle at the Pinnacles site. In 

the Page Valley, there exists no PBL height observations for the entire period of interest. One 

approach is to assume that PBL heights obtained from a nearby sounding station, where twice-

daily rawinsonde observations are made, are representative of the region (e.g. Hondula et al. 

2013). However, the spatial variability in PBL heights needs to be carefully assessed when using 

this approach. Lee and De Wekker (2016) found that mean afternoon PBL heights over the Page 

Valley are 200-400 m larger than the PBL heights estimated using observations from the nearest 

sounding station, located at Dulles airport (38.98 °N, 77.49 °W, 87 m a.s.l.) 90 km north-east of 

the Page Valley. Greater PBL heights over the Page Valley than near Dulles airport arise due to 

higher terrain and drier conditions in the Page Valley. Accounting for these PBL height 

differences is necessary to obtain the most reliable PBL height estimates for the Page Valley. 

Thus, to estimate PBL heights over the Page Valley, we used 0000 UTC (UTC = LST + 5) 
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Dulles airport rawinsonde observations and followed the approach developed by Lee and De 

Wekker (2016) to remove the early-evening near-surface stable layer oftentimes present in the 

sounding. We then calculated the bulk Richardson (Rb) number and determined the afternoon 

PBL height at Dulles airport as the first height where Rb exceeded a critical threshold, Rc, which 

we set to 0.25 (Vogelezang and Holtslag, 1996). The approach has been found to yield PBL 

heights that agree well with afternoon PBL heights obtained from reanalysis products and 

aircraft observations (i.e. Lee and De Wekker 2016) and has recently been used to develop a 

climatology of afternoon PBL heights over the contiguous USA (Lee and Pal 2017). 

To determine PBL heights over the Page Valley site from the afternoon Dulles Airport PBL 

height, following Lee and De Wekker (2016), we computed the difference in the daily 2100 UTC 

PBL height between the grid box in the North American Regional Reanalysis (Mesinger et al. 

2006) containing the Page Valley and the grid box containing Dulles Airport for the period 2009-

2012. Based on the analyses presented in Lee and De Wekker (2016), we determined a seasonal 

correction factor that represents the mean difference in PBL height as a function of season (Table 

1) and applied this correction to the afternoon PBL heights estimated from the 0000 UTC 

rawinsonde at Dulles Airport. 

3.2 Interpreting Mountaintop Trace-gas Measurements 

To help interpret the mountaintop trace-gas diurnal cycles, we subtracted the daily mean from 

each day before averaging the values together to generate composites. Removing the daily means 

allows for a better investigation of the dominant physical processes affecting the daily trace-gas 

cycle on diurnal time scales and removes the major influence of processes affecting trace-gas 

mixing ratios at longer time scales. For CO2 mixing ratio, these processes include the seasonal 
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cycle in vegetative photosynthetic uptake and respiration (e.g. Lee et al. 2012), whereas the 

seasonality of hydroxyl radicals and anthropogenic emissions affects the seasonal cycle in CO 

mixing ratio (e.g. Thompson et al. 1992; Novelli et al. 1998). 

Once we removed the daily means and calculated the standard errors (SE), we investigated 

the role of the PBL height on the diurnal CO2 and CO mixing ratio cycle for all days, regardless 

of the presence or absence of a wind-direction shift. Distinguishing between days with wind-

direction shifts and days without wind-direction shifts is important because of the role that wind-

direction shifts have on the observed trace-gas cycle at the site (Lee et al. 2015). The wind 

climatology from the site shows a backing from the north-west in the early morning to the south-

west during the daytime. This wind-direction shift occurs on a regional scale and is not a result 

of local, thermally-driven flows. The wind-direction shift has been found to correlate with trace-

gas cycle (in particular an increase in CO mixing ratio which makes it difficult to isolate the role 

of PBL height on the diurnal CO and CO2 mixing ratio cycle. Thus, following Lee et al. (2015), 

we also identified days without a wind-direction shift and that also had clear skies, using a 

clearness index (e.g. Whiteman et al. 1999), and compared these days to the set of days that 

included cloudy days and days with wind-direction shifts. 

Because the uncertainties in monthly PBL height estimates in this region can be as large as 

400 m (Lee and De Wekker 2016), we classified days with PBL heights below the ridgetop when 

the PBL height was at least 400 m below the maximum height of the mountain ridge (1200 m), 

and we classified days with PBL heights above the ridgetop when the PBL height was at least 

400 m above the ridgetop height. Thus, days with PBL heights <800 m a.s.l. and >1600 m a.s.l. 

were classified as below the ridgetop and above the ridgetop, respectively. Altering these 
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threshold values by ±200 m did not significantly affect the mean diurnal CO or CO2 mixing-ratio 

cycles on these subsets of days. 

To understand the role of valley-PBL air on the diurnal CO and CO2 mixing-ratio cycles, we 

used mountaintop measurements of specific humidity (q) and mountaintop and valley 

measurements of O3 mixing ratio. We used O3 mixing ratio and specific humidity measurements 

since they can be used as tracers of PBL air (e.g. Weiss-Penzais et al. 2006) and because CO and 

CO2 mixing-ratio measurements were unavailable from the valley. We computed differences in 

O3 mixing ratio between the mountaintop and valley to discern valley-PBL influences on the 

mountaintop measurements. Large O3 mixing-ratio differences (e.g. >20 ppb) imply less 

influence of valley-PBL air on the mountaintop measurements; small O3 mixing-ratio differences 

(e.g. ≈ zero) suggest that valley-PBL air reaches the mountaintop and affects the mountaintop 

trace-gas measurements. 

4 Results 

4.1 Seasonal PBL Height Cycle 

During the four-year period of interest, PBL heights in the 0000 UTC Dulles airport sounding 

range from <500 m a.s.l. to >2500 m a.s.l. (Fig. 2a). PBL heights range from 500 to 2000 m a.s.l. 

in the winter, with mean values around 1000 m a.s.l. PBL heights are largest in the spring and 

summer, when maximum values are around 2300 m a.s.l. The seasonal cycle in PBL heights 

closely follows the seasonal cycle of sensible heat flux and has been investigated in previous 

work (Lee and De Wekker, 2016). Afternoon (1200-1600 LST) sensible heat flux computed at 

the Pinnacles site is typically 50 W m-2 in the winter when PBL heights are smallest, but is 

largest in the late spring and early summer when mean afternoon sensible heat flux is typically 

around 200 W m-2 (Fig. 2b). In the discussion that follows, we consider situations in which the 
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256 PBL heights are well below  or well above the  ridge height, i.e. <800 m  a.s.l. and >1600 m  a.s.l., 

respectively. Over the total 4-year period, these situations occurred 24% and 32% of the time,  

respectively, for all days  (i.e. regardless of if the day  was cloudy or if there was a wind-direction 

shift present).  

257 

258 

259 

260 

261 Fig  2  PBL height percentiles,  computed over the period  1 January 2009 –  31 December  2012, as a function of time  

of  year after removing the near-surface stable layer  from the 0000  UTC  Dulles  airport sounding following L ee and 

De Wekker  (2016) (a).  Panel (b) shows afternoon (1200-1600 LST)  the sensible heat flux  from the Pinnacles site. 

X’s indicate medians; black bars extend out to the 25th  and 75th  percentiles. Dots indicate 5th  and 95th  percentiles.  

The sensible heat flux  is the mean over eight 30-min  averages  between 1200 and 1600 LST,  whereby the first  

average is from  1200-1230 LST and the final 30-min  average is from 1530-1600 LST.  
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4.2 Overview of CO and CO2 Mixing-Ratio Measurements 

The mean seasonal and diurnal cycles of CO mixing ratio at the Pinnacles site have been 

described in previous work (Lee et al. 2015), and characteristics of the mean seasonal and 

diurnal CO2 mixing-ratio cycle have been described by Lee et al. (2012) and Lee (2015). Briefly, 

CO mixing ratios are typically highest in March and lowest in October (not shown) which is 

consistent with findings from other mid-latitude continental monitoring sites (e.g. Popa et al. 

2010, Cristofanelli et al. 2013). The mean diurnal CO mixing-ratio cycle at the Pinnacles site is 

characterized by a daytime CO mixing-ratio increase, which is a common feature of other 

mountaintop monitoring sites at which valley-PBL air affects mountaintop trace-gas mixing-

ratios (e.g. Atlas and Ridley, 1996, MacDonald et al. 2011). The CO mixing-ratio increase 

occurs in all seasons and has the smallest amplitude in the summer (4.0 ppb) and largest 

amplitude in the winter (7.1 ppb) (Lee et al. 2015), which is inconsistent with the diurnal CO 

mixing-ratio cycle at mountaintops taller than Pinnacles (e.g. Forrer et al. 2000, Henne et al. 

2008b, Ou-Yang et al. 2014). At mountaintops taller than Pinnacles, deeper PBL heights during 

the summer than during the winter allow for valley-PBL air to be transported to the mountaintop, 

causing the largest CO mixing-ratio increases during the summer. Additionally, previous work at 

the Pinnacles site has found large day-to-day CO mixing-ratio variability which arises due to 

synoptic scale transport (Lee et al. 2012) and mesoscale circulations (Lee et al. 2015). 

In contrast to CO mixing ratio, previous studies on CO2 mixing ratio at the Pinnacles site 

have shown that seasonal changes are strongly correlated with seasonal changes in uptake and 

respiration (Lee et al. 2012). Consistent with other continental locations (e.g. Greco and 

Baldocchi 1996; Schmidt et al. 2014; Berhanu et al. 2016; Chandra et al. 2016; Sreenivas et al. 

2016), mean CO2 mixing ratios are typically highest in winter and lowest in the summer. On 
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diurnal time scales, there is a daytime decrease caused by local to regional photosynthetic uptake 

occurring during the growing season. There is also large day-to-day variability in CO2 mixing 

ratios due to mesoscale to synoptic scale transport processes that result in hourly CO2 mixing-

ratio changes sometimes exceeding 20 ppm (Lee et al. 2012) which is in agreement with findings 

reported at other forested mountaintop monitoring sites (e.g. Pillai et al. 2011; Brooks et al. 

2012). 

4.3 Effect of PBL Height on the Diurnal CO and CO2 Mixing-Ratio Cycle 

4.3.1 CO Mixing-Ratio Diurnal Cycle 

We found significant differences in the mean diurnal CO mixing-ratio cycle that depend on, 1) 

whether the PBL is below the ridgetop or the PBL is above the ridgetop, and 2) whether or not 

the day is a fair weather day with constant wind directions (Fig. 3). The same diurnal trends are 

found when computing the medians; in the present paper, we discuss the diurnal trends in the 

means for consistency with previous work at the site (e.g. Lee et al. 2012, Lee et al. 2015). When 

all days are considered (i.e. independent of the presence of fair weather conditions or presence of 

a wind-direction shift at the site), there is a daytime increase in the mean diurnal CO mixing-

ratio cycle on days when the PBL height is below 800 m a.s.l. On these days, CO mixing ratios 

increase from a minimum around 0700 LST to a maximum at 1900 LST (Fig. 3a). In contrast, 

daytime CO mixing ratios show a small decrease when the PBL height is above 1600 m a.s.l., 

but both cases show nearly constant CO mixing ratios after 1900 LST that suggest that the 

mountaintop is sampling air from the residual layer or the free atmosphere. 

Notable differences are present when we selected fair weather days with constant wind 

directions (Fig. 3b), i.e. days on which we expect there to be the largest sensitivity in trace-gas 

variability to differences in PBL height. Whereas the amplitude of the CO mixing-ratio increase 
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on days when the PBL height is below the ridgetop is comparable between all days and fair 

weather days with constant wind directions (9.5 ppb vs 9.0 ppb), CO mixing ratios on fair 

weather days with PBL heights below the ridgetop height decrease following a 1300 LST 

maximum. Additionally, on days with PBL heights above the ridgetop height, the mean decrease 

(6.2 ppb) is larger on fair weather days with constant wind directions (c.f. Fig. 3b) than the mean 

decrease for all days (c.f. Fig. 3a). On these days with a large afternoon decrease in CO mixing 

ratios, PBL dilution and entrainment cleaner free atmospheric air is likely to be the dominant 

driver of the diurnal CO mixing-ratio cycle, as shown in recent case studies from the site (Pal et 

al. 2017). Also, we note that the diurnal changes on these sets of days, including the short-lived 

peak around 1300 LST on days with a shallow PBL, are much larger than the standard errors. 

4.3.2 CO2 Mixing-Ratio Diurnal Cycle 

In the case of CO2 mixing ratios, there is a decrease during the daytime both on days when the 

PBL height is below the ridgetop and on days when the PBL height is above the ridgetop, 

regardless of whether or not fair weather days are considered (Fig. 3c; Fig. 3d). Maximum CO2 

mixing ratios are observed between 0200 LST and 0600 LST, whereas the minimum in CO2 

mixing ratios occurs around 1600 LST. When the PBL is below the ridgetop, the amplitude of 

the diurnal CO2 mixing-ratio cycle is 2.5 ppm when all those days are considered, but is 4.8 ppm 

on fair weather days with constant wind directions. Uncertainties are small on both subsets of 

days compared with the amplitude of the changes in the mean cycles; standard errors are <0.6 

ppm for both subsets of days. In addition, both subsets of days with PBL heights below the 

ridgetop have a short-lived CO2 mixing-ratio increase around noon. However, there is no such 

increase when the PBL exceeds the ridgetop. When all days with PBL heights exceeding the 
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337 ridgetop are  considered, the  amplitude  of the mean diurnal cycle is  4.6  ppm, but  is  6.1  ppm  on  

fair weather days  with constant wind  directions. We attribute  the larger  amplitude  of the mean  

diurnal CO2  mixing-ratio  cycle on fair  weather days  to a  combination of mixing within the  

daytime PBL  and also  to greater  uptake occurring both at the site  and along  upwind forested  

mountain slopes, which has been found to explain daytime  CO2  mixing-ratio  decreases  at other  

mountaintop sites  (e.g.  Sun et al. 2007).  Night-time  CO2  mixing  ratios are characterized by  an  

increase that occurs independently  of the daytime maximum PBL height relative to the ridgetop 

and  can be attributed to, e.g. on-site  respiration in  the growing season.  

338 

339 

340 

341 

342 

343 

344 

345 

346 Fig 3  Mean diurnal  cycle  in CO  mixing ratio,  measured  17 m  a.g.l., for PBL heights <800 m (blue line) and for  PBL  

heights >1600 m  (red line) for all days over the period 1 January  2009 –  31 December 2012 (a) and for the subset of  

fair weather  days with constant wind  directions (b). Same for panels (c) and (d) but for CO2 mixing ratio  measured  

17 m  a.g.l. at the Pinnacles site. The number of cases of  PBL height  <800 m a.s.l. and PBL  height  >1600  m a.s.l., N, 

is  noted in each panel. The circles represent the  standard error in the  measurements,  and the legend  for each species  

is shown on  panels (a) and (c).  For  brevity, the standard error  is  shown every 60  min rather than every 30  min.  
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4.3.3 Seasonal Differences between CO and CO2 Mixing-Ratio Diurnal Cycles 

Because the seasonal cycle of CO2 mixing ratios is strongly affected by photosynthetic uptake 

and respiration during the growing season, we differentiated between the mean diurnal cycles in 

the two contrasting seasons (summer and winter) for the subset of days with PBL heights below 

the ridgetop and for the subset of days with PBL heights above the ridgetop. We found that the 

amplitude of the diurnal CO2 mixing-ratio cycle is largest on fair weather days with PBL heights 

exceeding the ridgetop height during the summer (Fig. 4), whereas diurnal CO2 mixing-ratio 

changes are smallest on days with deep PBL heights during the winter (Fig. 5). Most notable, 

however, is a daytime CO2 mixing-ratio increase during the winter when the PBL remains below 

the ridgetop that begins around 1100 LST and leads to maximum CO2 mixing ratios around 1800 

LST (Fig. 5c). A CO2 mixing-ratio increase is also observed in summer (Fig. 4) but is much less 

pronounced and shorter-lived than in winter. Regardless of whether the PBL is below the 

ridgetop or is above the ridgetop, CO and CO2 mixing ratios closely follow the same cycle during 

the winter which indicates that, when CO2 uptake is absent, CO and CO2 mixing ratios behave as 

similar tracers of atmospheric dynamics at the site. The similar behaviour of the diurnal CO and 

CO2 mixing-ratio cycles during the winter, particularly the daytime CO and CO2 mixing-ratio 

increase on days with PBL heights below the mountaintop suggests that they are mainly 

influenced by polluted air arriving at the mountaintop during the daytime from the adjacent 

valleys. We hypothesize that its origin can be traced to the upwind adjacent valley; we 

investigate this hypothesis in more detail in the next section. 
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373 
374 Fig 4  Diurnal  CO2  mixing-ratio  cycle for all days (a) and for the subset of fair  weather days  with constant  winds (b)  

for the summer (1 June  –  31 August)  months. The circles represent the standard error  in the  measurements.  375 
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378 Fig 5 Same as Fig. 3 but only for days during the winter months (1 December – 28 February). 
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4.4 Indicators of Valley-PBL Air Impacting the Mountaintop Measurements 

In the previous section, we discussed the diurnal CO and CO2 mixing-ratio cycles as a function 

of PBL height relative to the mountaintop height. These diurnal CO mixing-ratio changes closely 

follow changes in specific humidity (q) on the subset of fair weather days with constant wind 

directions for both the subsets of days with PBL heights below the ridgetop and for the subset of 

days with PBL heights above the ridgetop (Fig. 6b). On days with the PBL height below the 

ridgetop, the simultaneous CO mixing ratio and specific humidity increases indicate that these 

days are characterized by vertical transport and mixing of valley-PBL air to the mountaintop 

(e.g. Weiss-Penzias et al. 2006). Previous studies (i.e. Lee and De Wekker 2016) from the site 

have found, through the combined use of observations and numerical simulations, that these 

cases are characterized by a daytime PBL that parallels the underlying terrain. Shallow daytime 

PBLs that closely parallel the underlying terrain have also been reported in studies involving 

other mountaintops (e.g. De Wekker 2002; De Wekker and Kossman 2015). The transport of 

valley-PBL air to the mountaintop within this shallow terrain-following daytime PBL results in a 

short-lived increase in CO2 mixing ratio that corresponds with the peak in specific humidity and 

has been attributed in previous studies at the site to upslope flows (Pal et al. 2017). In contrast, 

the decrease in passive tracers like specific humidity that accompanies the decrease in CO 

mixing ratio on days with the PBL height above the ridgetop, as well as the absence of a 

noontime increase in CO2 mixing ratio, implies that PBL dilution and entrainment overwhelm 

the transport of polluted valley-PBL air to the mountaintop via convective mixing and upslope 

flows. 

The relationships between CO mixing ratio and specific humidity, as well as CO2 mixing 

ratio and specific humidity, as a function of PBL height relative to the ridgetop are less clear 
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when all days in the period of record are considered (Fig. 6a). When the PBL height is below the 

ridgetop, both CO mixing ratios and specific humidity increase beginning around 0700 LST, 

whereas CO2 mixing ratios decreases (c.f. Fig. 3c). However, specific humidity remains 

somewhat constant between 1200 LST and 1900 LST, but during this time CO mixing ratios kept 

increasing and CO2 mixing ratios decrease (c.f. Fig. 3a, 3c). On fair weather days with constant 

wind directions and PBL tops below the ridgetop, CO mixing ratios and specific humidity 

increase after the onset of stable boundary-layer development around sunset to a secondary 

maximum around 2300 LST (c.f. Fig. 3b, Fig. 6b). In the case of CO2 mixing ratio, respiration 

also contributes to the nocturnal CO2 mixing-ratio increase. 

When days with PBL heights above the ridgetop height are considered irrespective of wind-

direction shift or the day’s clearness index, CO mixing ratio and specific humidity decrease 

throughout the entire night. However, the amplitude of the CO mixing ratio decrease on the 

subset of fair weather days with constant wind directions is about 4 ppb larger than the mean CO 

mixing ratio cycle of all days with PBL heights exceeding the ridgetop height. One possible 

reason for this larger CO mixing ratio decrease is more pronounced nocturnal downslope flows 

under fair weather conditions (e.g. Zardi and Whiteman, 2013) which result in a transport of 

clean free atmospheric air to the mountaintop (e.g. Schmidt et al. 1996). 

O3 mixing ratios at a nearby mountaintop (at the Big Meadows site, located about 14 km 

south of the Pinnacles site but at a similar elevation; see Section 2.3) and a valley site also show 

significant differences in their diurnal cycles that depend on 1) whether or not the day is a fair 

weather day, and 2) PBL height (Fig. 6c, 6d, 6e, 6f). At the mountaintop, the amplitude in the 

diurnal O3 mixing-ratio cycle is larger on fair weather days with PBL tops exceeding the ridgetop 

height (Fig. 6c, 6d). In contrast, the amplitude of the diurnal O3 mixing-ratio cycle at the valley 
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426 site is largest on  fair  weather days  with  PBL tops  below the ridgetop (Fig.  6f) due to an increase  

in pollutant  mixing  ratios within a  shallow PBL that favors O3  production.  Also note that the  

amplitude of the  diurnal  O3  mixing-ratio  cycle in  the valley is much larger  than  at the 

mountaintop (cf.  Fig. 6e, 6f and Fig. 6c, 6d).  

427 

428 

429 

430 

431 Fig 6  Mean diurnal  cycle  in specific humidity,  measured 17 m  a.g.l., for PBL heights <800 m (blue line) and for  

PBL heights >1600 m  (red line) for all days (a) and for the subset of fair  weather days  with constant  wind directions  

(b)  independent of season f or 1 Jan 2009 –  31 Dec 2012. Panels (c) and (d) show O3  mixing  ratio  at the  mountaintop 
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(the Big Meadows site), and panels (e) and (f) show O3 mixing ratio at the valley site (Luray). The number of cases 

of PBL height <800 m a.s.l. and PBL height >1600 m a.s.l., N, is noted in each panel. The circles represent the 

standard error in the measurements and are shown in the bottom right of panels (a), (c), and (e) for specific 

humidity, mountaintop O3 mixing ratios, and valley O3 mixing ratios, respectively. Note that the daily means are 

removed. 

The role of valley-PBL air on the mountaintop trace-gas mixing ratios is further investigated 

by computing the difference in O3 mixing ratios between the mountaintop and valley. O3 mixing 

ratios are 20-30 ppb greater at the mountaintop than in the valley during the night-time (Fig. 7) 

which has previously been attributed to deposition (e.g. Reitebuch et al. 2000, Mayer et al. 2008) 

and to enhanced O3 depletion by nitric oxide in valleys (e.g. Broder and Gygax, 1985, Wunderli 

and Gehrig, 1990, Vögtlin et al. 1996). Additionally, previous studies have shown that the 

greater nocturnal O3 mixing ratios at mountaintops occur because the mountaintops are exposed 

to O3-rich free atmospheric air via downslope flows (e.g. Zaveri et al. 1995) and elevated O3 

layers which oftentimes form over mountainous terrain (e.g. Neu et al. 1994, McKendry and 

Lundgren 2000). O3 mixing-ratio differences between the mountaintop and valley become 

smaller beginning around sunrise and are smallest from about 1000-1700 LST (typically <2 ppb). 

The small differences are attributed to the mixing of transported valley-PBL air with the air mass 

at the mountaintop, as reported in previous studies for other mountaintop sites, e.g. 

Hohenpeissenberg (998 m a.s.l.) (Mayer et al. 2008). We note that these transport processes 

occur independently of PBL height relative to the mountaintop and independently of the 

presence of fair weather conditions at the site (Fig. 7b). This finding most likely indicates that 

valley-PBL air arrives at the mountaintop regardless of the PBL height relative to the 
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457 mountaintop, and that the mountaintop and valley measure  similar  trace-gas  mixing  ratios  during  

the daytime.  458 

459 

460 Fig  7  Diurnal  cycle in O3  mixing-ratio  difference between the mountaintop and valley f or days  with PBL heights  

<800 m (blue line) and for  PBL heights >1600 m  (red line) for all  days (a) and for the subset of fair  weather days  

with constant wind directions  (b).  The circles represent the standard error  in the  measurements.  

 

4.5  Effect of PBL Height  on Diurnal Contrasts in CO and CO2  Mixing Ratios  

To quantitatively investigate the impacts  of  PBL  dilution and entrainment on the observed  

diurnal CO and CO2  mixing  ratios,  we  could determine  the relationship between  daily CO  and 

CO2  mixing-ratio  amplitude  and  afternoon PBL height.  However,  the amplitudes represent the  

absolute change in CO and CO2  mixing  ratio  occurring over the entire  diurnal cycle and also  

include  night-time  processes, e.g. nocturnal sinking motions that transport  free-atmospheric air to  

mountaintops (e.g. Schmidt et al. 1996). These processes can affect the  trace-gas  cycle 

independently of the maximum daytime PBL height. In addition, nocturnal respiration occurring  

at local to regional scale can impact the CO2  mixing-ratio  amplitude independently of PBL  

height. Therefore, to isolate the impact of processes occurring in the daytime PBL  on the  diurnal  

mountaintop CO  and CO2  mixing-ratio  cycle, we computed  the difference between mean  
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afternoon (1200-1600 LST) and mean morning (0400-0800 LST) mixing-ratios rather than the 

daily amplitudes. There is an inverse relationship between this CO mixing-ratio difference and 

PBL height when all days are considered (r = -0.86, p < 0.01) and only when the PBL height 

exceeds 2000 m a.s.l., CO mixing ratios are typically lower in the afternoon than during the 

morning (Fig. 8a). On the subset of fair weather days with constant wind directions, there also 

exists an inverse relationship between PBL height and the daytime CO mixing-ratio difference (r 

= -0.67, p = 0.02) (Fig. 8b). Mean CO mixing ratios are about 4 ppb larger during the afternoon 

than during the morning on days when the PBL height is below the ridgetop because of the 

upward transport and mixing of pollutants. When the PBL height exceeds the ridgetop, afternoon 

CO mixing ratios are about 5 ppb lower than morning CO mixing ratios because pollutants are 

mixed over a volume of air that is larger than on days with a shallow PBL, thereby resulting in a 

decrease in trace-gas mixing ratios. This decrease is similar to what occurs over flat terrain (e.g. 

Pochanart et al. 2003, Popa et al. 2010, Pal 2014, Berhanu et al. 2016, Chandra et al. 2016, 

Sreenivas et al. 2016), and its implications are revisited in Section 5. 
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Fig 8 Mean difference between mean afternoon (1200-1600 LST) and mean morning (0400-0800 LST) CO mixing 

ratios as a function of PBL height for 1 January 2009 – 31 December 2012 for all days (a) and for fair weather days 

with constant wind directions (b). Same for panels (c) and (d) but for CO2 mixing ratio. Data from all days represent 

12 bins with 69 values per bin; data from fair weather days represent 12 bins with 11 values per bin. 

There is also an inverse relationship between the PBL height in the difference between mean 

afternoon and mean morning CO2 mixing ratios (r = -0.89, p < 0.01) when either all days are 

considered (Fig. 8c) or just the subset of fair weather days (r = -0.67, p = 0.02) (Fig. 8d), with a 

larger decrease in daytime CO2 mixing ratio on days with deeper PBLs. The differences between 

the morning and afternoon are larger on the subset of fair weather days most likely due to larger 

on-site CO2 fluxes along with deep PBL mixing occurring on days with stronger insolation (not 

shown). 
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502 Both when all days  or  only fair weather days with constant wind  directions are considered,  

CO mixing  ratios are lower  in  the afternoon than in the  morning  on days when t he PBL height  

greatly exceeds the ridgetop height, i.e. is about 1 km above the ridgetop or at  least  2000 m  a.s.l.  

(Fig. 9a).  The mean diurnal CO  mixing-ratio  cycle  in both of these scenarios  is  characterized by  

a CO mixing-ratio  maximum around 0730 LST, whereas the minimum CO  mixing  ratios occur  

around 1500 LST  in both mean diurnal cycles  (Fig. 9a).  The decrease in the diurnal  CO and CO2  

mixing-ratio  cycles  (Fig. 9b)  both on all days  and on the subset of  fair  weather days suggests the  

influences  of PBL dilution a nd entrainment.  
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511 Fig  9  Diurnal CO (a) and CO2  (b) mixing-ratio  cycle  on all days  over the period 1 January 2009 –  31 December  

2012  when PBL heights  >2000 m  a.s.l.  (red  line, N=242) and for the subset of  fair  weather days  with  PBL heights  

>2000 m  a.s.l. and constant wind  directions (blue  line, N=45).  The circles represent the standard error in the  

measurements.  For readability,  the standard error is shown every 60  min rather than every 3 0 min.  

 

5  A Conceptual  Framework  Highlighting the  Key  Findings  

We summarize our findings using a  conceptual  framework  shown in Fig. 10  to  illustrate  the 

dominant physical processes affecting the diurnal cycle of trace gases, specifically  CO  mixing  

ratio,  at mountaintops  as a function of  afternoon  valley-PBL  top  relative to  ridgetop height. In  

the conceptual  diagram, we  assume that the valley is the sole  source of pollutants. We also  
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assume that there are no chemical reactions, including photosynthetic uptake of CO2 mixing ratio 

during summer, that either add or remove the trace gas from the atmosphere, and we neglect 

surface deposition. Therefore, the conceptual diagram that we present closely matches the 

diurnal CO mixing-ratio cycles shown in Figs. 3 and 9. 

On days when the valley-PBL top remains below the ridgetop (Fig. 10a), pollutant transport 

from the valley to the mountaintop occurs via upslope flows and PBL mixing within a daytime 

PBL. The result is that pollutants are confined within this shallow PBL that parallels the 

underlying terrain throughout the day, as shown by the PBL tops during the mid-morning and 

mid-afternoon in Fig. 10a which correspond with times t1 and t2, respectively. Between time t1 

and t2, pollutants are transported to the mountaintop which causes their mixing ratios at the 

mountaintop to increase (Fig. 10b). After time t2, local mixing occurring with the PBL at the 

ridgetop causes the pollutant mixing-ratios to decrease. The daytime increase occurs between 

times t1 and t2 is contrary to many previous studies that have reported little to no change in 

daytime trace-gas mixing ratios when the valley PBL remains below the ridgetop height (e.g. 

Forrer et al. 2000, Obrist et al. 2008, MacDonald et al. 2011). 

A key difference between these previous findings from other mountaintops and our findings 

is that the previous studies were conducted using measurements from mountaintops with much 

greater topographic relief than the Pinnacles site, i.e. those that are typically at least 2-3 km in 

elevation and at least 1-2 km above the surrounding valley or plain (e.g. Keeling et al. 1976, 

Forrer et al. 2000, De Wekker et al. 2009, McClure et al. 2016, Zhu et al. 2016). Mountaintops 

with these topographic characteristics remain in the free atmosphere much of the time and are 

much more isolated from the effects of valley-PBL air because the maximum height of the valley 

PBL is at least several hundred metres below the ridgetop height. The Pinnacles site is affected 
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by valley-PBL air much more frequently than taller mountaintops as the PBL height is at least 

500 m over the ridgetop on about one-third of all days. Because of the daytime trace-gas increase 

that we observe at the Pinnacles site on days with PBL heights below the ridgetop, the daytime 

trace-gas measurements from the Pinnacles site, as well as other mountaintops with similar 

elevation above the surrounding valley and where the daytime maximum PBL height does not 

exceed the ridges, cannot be considered representative of free atmospheric values, but rather are 

representative of the local valley PBL. Therefore, these measurements should not be assimilated 

into e.g. inverse carbon transport models or air chemistry models that cannot resolve local to 

mesoscale processes. 

On days when valley-PBL heights exceed the ridgetop (i.e. >1600 m a.s.l.) (Fig. 10c), the 

PBL is initially parallel to the underlying terrain during the mid-morning, as shown by the PBL 

top at time t1 in Figure 10c, like it is on days with PBL heights below the ridgetop. Pollutants are 

transported to the mountaintop during this time as evident by the short-lived maximum in CO 

mixing ratios. As the PBL grows deeper during the day and exceeds the ridgetop height, it does 

not parallel the underlying terrain, as shown by the PBL top at time t2. After the mid-morning 

maximum in pollutant mixing-ratios at time t1, we infer that pollutant transport via upslope 

flows becomes overwhelmed by PBL dilution and the entrainment of cleaner free atmospheric 

air on these days. Thus, mountaintop pollutant mixing ratios decrease between times t1 and t2 to 

an afternoon minimum on these days (Fig. 10d). This daytime trace-gas mixing ratio decrease is 

also contrary to findings from other mountaintops. The key difference between the Pinnacles site 

and other mountaintops is that other mountaintops where studies have been conducted are higher 

in elevation and extend higher above the surrounding valley/plain than the Pinnacles site (e.g. 

Forrer et al. 2000, Bukowiecki et al. 2016, McClure et al. 2016, Zhu et al. 2016). At 
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mountaintops with these topographic characteristics, the valley PBL may reach the mountaintop 

during the daytime but the PBL is not deep enough above the ridgetop for mixing to dilute the 

pollutants and cause their mixing ratios to decrease. 

We also note that the daytime pollutant mixing-ratio decrease at the Pinnacles site on days 

with PBL heights exceeding the ridgetop height is similar to the findings from tall towers in flat 

terrain (e.g. Schmidt et al. 2014, Pal et al. 2015, Berhanu et al. 2016). Our results on the deep 

PBL exceeding the ridgetop suggest that, although pollutants arrive at the mountaintop via 

upslope flows, the impact of these flows on the mountaintop measurements is overwhelmed by 

PBL dilution and entrainment of free atmospheric air. This same process occurs in flat terrain, 

where PBL dilution and entrainment cause a decrease in pollutant mixing ratios, and suggests 

that low-elevation mountaintops such as the Pinnacles site behave like tall towers. The same is 

also true for other mountaintops where the regional PBL exceeds the ridgetop height. Based on 

these findings, selecting days on which PBL heights over the adjacent valley or plains exceed the 

mountaintop height can be used as guidance for identifying trace-gas measurements 

representative of the regional PBL. Trace-gas measurements made during the afternoon on these 

days can then be used for assimilation into regional scale inverse carbon transport models and air 

chemistry studies. 
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Fig 10 Conceptual diagram of dominant trace-gas transport mechanisms, assuming the valley (grey rectangle) is the 

sole source of pollutants, affecting the diurnal cycle of a passive trace gas as a function of PBL height relative to a 

1000 m a.s.l. mountaintop (black triangle) on days when the height of the afternoon valley PBL remains below the 

mountaintop. The dominant transport mechanisms shown are synoptic-scale advection (1), convective mixing (2), 

upslope flows (3), and free atmosphere air entrainment (4) and are indicated with arrows. The PBL top at times t1 

and t2 is shown by solid and dotted lines, respectively. These times are indicated on panel (b) which shows the near-

surface diurnal trace-gas cycle starting with a set mixing ratio of trace gas and assuming no advection or sources. 

The shaded and non-shaded areas in this panel represent night-time and daytime, respectively. Same for panels (c) 

and (d) but for days when PBL height is much greater than the height of the mountaintop. 

6 Summary and Conclusions 

We presented the first study investigating the effect of the afternoon PBL height on the diurnal 

CO and CO2 mixing-ratio cycle at a low mountaintop using measurements from a mountaintop 
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trace-gas monitoring site (the Pinnacles site, in the Virginia Blue Ridge Mountains). We found 

that the diurnal cycle of CO mixing ratios is typically largest on days when the PBL height 

remained below the ridgetop (i.e., ≈1000 m a.s.l.) and is smallest on days when the PBL height 

exceeded the ridgetop by at least 400 m. On days when the valley-PBL height is below the 

ridgetop, there is a daytime CO mixing-ratio increase, as well as a short-lived increase in CO2 

mixing ratios during the winter, caused by the transport of polluted valley-PBL air to the 

mountaintop. On days when the valley-PBL height exceeds the ridgetop height, both CO and 

CO2 mixing ratio decrease during the daytime due to dilution and entrainment that negate the 

influence of pollutant transport from the valley floor. 

The results in this study provide additional insights into the use of trace-gas measurements 

from low-elevation mountaintops like the Pinnacles site in applications requiring regionally-

representative values. The present study builds upon previous studies from the region (Lee et al. 

2012, 2015, Pal et al. 2017) by helping to further understand the local scale to mesoscale 

meteorological processes affecting the trace-gas cycle at low mountaintops. The daytime CO 

mixing-ratio increase on days with PBL heights below the ridgetop, as well as the small 

differences in O3 mixing ratio between the mountaintop and valley, suggest that the mountaintop 

is mostly influenced by valley-PBL air, and therefore the mountaintop trace-gas measurements 

are representative of the “local” valley atmosphere. Pollutants are also transported to the 

mountaintop during the daytime on days when the PBL exceeds the ridgetop height, but PBL 

dilution overwhelms the influence of upslope pollutant transport, causing CO and CO2 mixing 

ratios to decrease. This behaviour in CO and CO2 mixing ratios is also observed in measurements 

from tall towers (i.e. larger than a few hundred metres a.g.l., or more than about 10% of the 

daytime PBL depth) in flat terrain. The daytime decrease that we observed indicates that 
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621 afternoon trace-gas  measurements from low mountaintops made when PBL heights  over the  

adjacent valley or plains  exceed the ridgetop can be used in the same way that afternoon  

measurements  from tall towers  are used in  applications requiring regionally-representative 

measurements.   

 

7 Tables  

Season  Correction (m)  

Winter  +190  

Spring  +210  

Summer  +300  

Fall  +250  

Table 1  Seasonal correction  factor  applied to the  Dulles  Airport rawinsonde  PBL height,  based on findings  from  

Lee and De Wekker  (2016), to better approximate the daytime  maxmimum  PBL  height over the Page Valley.  
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